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contains two sections. Answer section | questions in the answer book provided. Section Il Internal
examination questions must be answered in the question paper itself. Follow the detailed
instructions given under section II.

SECTION |

Part A (Short Answer Questions)
Answer any eight questions.

Weight 1 each.

1. Ifa normed space X is reflexive , then prove that it is complete.
2. Show that uniform operator convergence T,, — T',T,, € B(X,Y), implies strong operator convergence with the same limit.
3. Define fixed point of a mapping. Give an example.

4. Define eigenvalues and eigenvectors of a linear operator T': D(T') — X , where X # {0} is a complex normed space and

D(T) C X.

5. When we can say that an operator function S : A — B(X, X) , where A be an open subset of C' and X is a Banach space is locally

holomorphic?
6. Define inverse of an element x € A, where A is an algebra with identity. Show that inverse of an element if it exist is unique.
7. Let A be a complex Banach algebra with identity. Then show that the spectrum o(x) of an z € A is closed.
8. If X is a finite dimensional normed space then show that the identity operator 7 : X — X is not compact.

9. Let P; and P; be projections of a Hilbert space H onto Y] and Y5 respectively and P; P, = P, P;. Show
that P; + P, — P; P, is a projection of H onto Y7 + Y5.
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Let P; and P, be projections defined on a Hilbert space H and let Yy = P;(H) and Yo = P»(H). If the difference P = P, — P isa
projection, prove that ¥; C Ys.

(8x1=8 weightage)

Part B (Short Essay/Problems)
Answer any six questions.

Weight 2 each.

Let (z,) be a weakly convergent sequence in a normed space X, say, &, — . Then prove the following,
(a) The weak limit z of (xy,) is unique.
(b) Every subsequence of (z,,) converges weakly to z.

(c) The sequence (||z,]|) is bounded.

Let X and Y are normed spaces. Prove that ||(z,y)|| = max{||z|,||y||} definesanormon X x Y.

Prove that the spectrum o(T") of a bounded linear operator 7' on a complex Banach space X is closed.

. . . .14 2
Find the eigenvalues and eigenvectors of the matrix L 3} .

If T is a compact linear operator on a normed space X, Prove that for every A # 0, dim N(T/\") < oo and range of T is closed.

Prove that every normed space X can be expressed as the direct sum of two closed subspaces, which are the null space and range of
the operator T} where T : X — X is a compact linear operator and A # 0.

LetT : H — H be a bounded linear operator on a complex Hilbert space H. Then prove that a number A € p(T") if and only if there

exists a ¢ > 0 such that | Thz|| > ¢||z| Vz € H.

LetT : H — H be a bounded self-adjoint linear operator on a complex Hilbert space H # {0}. Prove that sup (T'z,z) € o(T).
[lz]=1

(6x2=12 weightage)

Part C (Essay Type Questions)
Answer any two questions.

Weight 5 each.

State and prove Bounded Inverse Theorem.

State and prove Spectral Mapping Theorem for Polynomials.
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21.

If B is a subset of a metric space X , then prove the following
a. If B is relatively compact, then B is totally bounded.
b. If B is totally bounded and X is complete, then B is relatively compact.
C. If B is totally bounded, then for every e > 0 B has a finite € - net contained in B.
d. If B is totally bounded, then B is separable.
22. Let(T;) be a sequence of bounded self-adjoint linear operators on a complex Hilbert space H such that
T. <Tp <---<T, <--- < K where K is a bounded self-adjoint linear operator on H. Suppose that any T; commutes with K and

with every Tp,,. Then prove that (73, ) is strongly operator convergent and the limit operator 7 is linear, bounded and self-adjoint and

satisfies T' < K.

(2x5=10 weightage)
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